Offre de thèse
Carte orthotropes pour la génération de maillages
Date limite de candidature
30-06-2025
Date de début de contrat
01-10-2025
Directeur de thèse
SOKOLOV Dmitry
Encadrement
Regular meetings with the student
Type de contrat
école doctorale
équipe
PIXELcontexte
***Orthotropic map applications for remeshing*** In a modern version of the mapping problem, surfaces are represented by triangle meshes and the flat representation is not only used for information storage (texture, normal). In particular, by computing a cleverly constrained map to the plane and by overlying a regular grid in parameter space, we obtain a decomposition of the original surface into quadrangles (see Figure 1). This transformation of triangle mesh to a quadrangle mesh proves to be quite challenging but very useful in practice. Anisotropic remeshing. The objective of quad (or hex) remeshing is to generate a mesh that accurately approximate a target geometry while maintaining a fixed number of elements. When approximating a surface using a quad mesh, theoretical findings indicate that the edges should align with the principal (orthogonal) curvature directions, and the aspect ratio of the elements should be in proportion to the ratio of the principal curvatures as in the inset figure. This result is a quite intuitive because regions with high curvature demand smaller elements for a precise approximation. Similarly, to reduce numerical errors in numerical simulations, the mesh should be denser in areas where the expected solution exhibits significant variations and less dense in areas where the solution is nearly flat. The theory suggests that the most accurate quad (or hex) mesh must have edges aligned with the (orthogonal) eigenvectors of the function's Hessian. Clearly, both aspects of the approximation problem can be addressed by meshes with rectangular (or rectangular cuboid) elements, which can be extracted from an orthotropic map. Numerical simulation. It is well-known that the finite element method exhibits improved convergence properties when elements approach perfect squares or cubes, and the convergence is not guaranteed in the presence of non-convex elements. By enforcing rectangular elements through orthotropic mappings, we not only avoid non-convexity but also fulfill the requirements for the optimal convergence of the popular finite elements.spécialité
Informatiquelaboratoire
LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Mots clés
Maillage, Traitement de la géométrie, informatique graphique
Détail de l'offre
Le calcul de cartes planes est un problème très ancien qui a occupé géographes et mathématiciens pendant des siècles, dans le but de mieux représenter la Terre à différentes échelles. Lorsqu'une surface courbe est étirée et cisaillée pour être projetée sur un plan, la représentation plate des pays ou des continents ne respecte plus fidèlement leurs formes d'origine. En ce sens, il n'existe pas de carte parfaite : toute carte introduit un certain niveau de distorsion.
Nous proposons d'étudier l'ensemble des applications qui sont totalement exemptes de cisaillement. De telles cartes n'autorisent que des étirements indépendants selon deux (ou trois) directions orthogonales. Inspirés par la science des matériaux, nous les appelons des cartes « orthotropes.
Keywords
Meshing, geometry processing, computer graphics
Subject details
Computing planar maps is a very old problem that has occupied geographers and mathematicians for centuries in order to best describe the earth at different scales. As a curved surface is stretched and sheared into the plane, the flat representation of countries or continents are no longer faithful to their original shapes. In this sense, there are no perfect maps, and any maps introduce a certain amount of distortion. We propose to study the set of mappings which are entirely free from shear. Such maps only allow independent stretching in two (or three) orthogonal directions. Inspired by materials science, we refer to them as “orthotropic” maps.
Profil du candidat
Compétences requises :
- Connaissances en C++, Python ou MATLAB
- Connaissances en algorithmes de traitement géométrique ou, à défaut, en géométrie différentielle
Compétences comportementales :
- Capacité à travailler en équipe et à collaborer avec des experts d'autres domaines
- Rigueur et souci du détail
Candidate profile
Required skills:
- Knowledge in C++, Python or MATLAB
- Some knowledge of geometry processing algorithms or alternatively in differential geometry
Behavioral skills:
- Ability to work in a team and collaborate with experts from other fields
- Thorough and detail-oriented
Référence biblio
Curvature-Driven Conformal Deformations, 2024
Etienne Corman
The Method of Moving Frames for Surface Global Parametrization, 2024
Guillaume Coiffier and Etienne Corman